1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
/*
* Copyright 2014 Daniel Vrátil <dvratil@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ASYNC_H
#define ASYNC_H
#include <functional>
#include <list>
#include <type_traits>
#include <cassert>
#include <iterator>
#include "future.h"
#include "async_impl.h"
#include <QVector>
#include <QObject>
namespace Async {
template<typename PrevOut, typename Out, typename ... In>
class Executor;
class JobBase;
template<typename Out, typename ... In>
class Job;
template<typename Out, typename ... In>
using ThenTask = typename detail::identity<std::function<void(In ..., Async::Future<Out>&)>>::type;
template<typename Out, typename In>
using EachTask = typename detail::identity<std::function<void(In, Async::Future<Out>&)>>::type;
template<typename Out, typename In>
using ReduceTask = typename detail::identity<std::function<void(In, Async::Future<Out>&)>>::type;
namespace Private
{
template<typename ... T>
struct PreviousOut {
using type = typename std::tuple_element<0, std::tuple<T ..., void>>::type;
};
class ExecutorBase
{
template<typename PrevOut, typename Out, typename ... In>
friend class Executor;
public:
virtual ~ExecutorBase();
virtual void exec() = 0;
inline FutureBase* result() const
{
return mResult;
}
protected:
ExecutorBase(ExecutorBase *parent);
ExecutorBase *mPrev;
FutureBase *mResult;
};
template<typename PrevOut, typename Out, typename ... In>
class Executor : public ExecutorBase
{
protected:
Executor(ExecutorBase *parent)
: ExecutorBase(parent)
, mPrevFuture(0)
, mPrevFutureWatcher(0)
{}
virtual ~Executor() {}
inline Async::Future<PrevOut>* chainup();
virtual void previousFutureReady() = 0;
void exec();
std::function<void(const In& ..., Async::Future<Out> &)> mFunc;
Async::Future<PrevOut> *mPrevFuture;
Async::FutureWatcher<PrevOut> *mPrevFutureWatcher;
};
template<typename Out, typename ... In>
class ThenExecutor: public Executor<typename PreviousOut<In ...>::type, Out, In ...>
{
public:
ThenExecutor(ThenTask<Out, In ...> then, ExecutorBase *parent = nullptr);
void previousFutureReady();
private:
Async::FutureWatcher<typename PreviousOut<In ...>::type> *mFutureWatcher;
};
template<typename PrevOut, typename Out, typename In>
class EachExecutor : public Executor<PrevOut, Out, In>
{
public:
EachExecutor(EachTask<Out, In> each, ExecutorBase *parent);
void previousFutureReady();
private:
QVector<Async::FutureWatcher<PrevOut>*> mFutureWatchers;
};
template<typename Out, typename In>
class ReduceExecutor : public Executor<In, Out, In>
{
public:
ReduceExecutor(ReduceTask<Out, In> reduce, ExecutorBase *parent);
void previousFutureReady();
};
} // namespace Private
/**
* Start an asynchronous job sequence.
*
* Async::start() is your starting point to build a chain of jobs to be executed
* asynchronously.
*
* @param func An asynchronous function to be executed. The function must have
* void return type, and accept exactly one argument of type @p Async::Future<In>,
* where @p In is type of the result.
*/
template<typename Out>
Job<Out> start(ThenTask<Out> func);
class JobBase
{
template<typename Out, typename ... In>
friend class Job;
public:
JobBase(Private::ExecutorBase *executor);
~JobBase();
protected:
Private::ExecutorBase *mExecutor;
};
/**
* An Asynchronous job
*
* A single instance of Job represents a single method that will be executed
* asynchrously. The Job is started by @p Job::exec(), which returns @p Async::Future
* immediatelly. The Future will be set to finished state once the asynchronous
* task has finished. You can use @p Async::Future::waitForFinished() to wait for
* for the Future in blocking manner.
*
* It is possible to chain multiple Jobs one after another in different fashion
* (sequential, parallel, etc.). Calling Job::exec() will then return a pending
* @p Async::Future, and will execute the entire chain of jobs.
*
* @code
* auto job = Job::start<QList<int>>(
* [](Async::Future<QList<int>> &future) {
* MyREST::PendingUsers *pu = MyREST::requestListOfUsers();
* QObject::connect(pu, &PendingOperation::finished,
* [&](PendingOperation *pu) {
* future->setValue(dynamic_cast<MyREST::PendingUsers*>(pu)->userIds());
* future->setFinished();
* });
* })
* .each<QList<MyREST::User>, int>(
* [](const int &userId, Async::Future<QList<MyREST::User>> &future) {
* MyREST::PendingUser *pu = MyREST::requestUserDetails(userId);
* QObject::connect(pu, &PendingOperation::finished,
* [&](PendingOperation *pu) {
* future->setValue(Qlist<MyREST::User>() << dynamic_cast<MyREST::PendingUser*>(pu)->user());
* future->setFinished();
* });
* });
*
* Async::Future<QList<MyREST::User>> usersFuture = job.exec();
* usersFuture.waitForFinished();
* QList<MyRest::User> users = usersFuture.value();
* @endcode
*
* In the example above, calling @p job.exec() will first invoke the first job,
* which will retrieve a list of IDs, and then will invoke the second function
* for each single entry in the list returned by the first function.
*/
template<typename Out, typename ... In>
class Job : public JobBase
{
template<typename OutOther, typename ... InOther>
friend class Job;
template<typename OutOther>
friend Job<OutOther> start(Async::ThenTask<OutOther> func);
public:
template<typename OutOther, typename ... InOther>
Job<OutOther, InOther ...> then(ThenTask<OutOther, InOther ...> func)
{
return Job<OutOther, InOther ...>(new Private::ThenExecutor<OutOther, InOther ...>(func, mExecutor));
}
template<typename OutOther, typename InOther>
Job<OutOther, InOther> each(EachTask<OutOther, InOther> func)
{
static_assert(detail::isIterable<Out>::value,
"The 'Each' task can only be connected to a job that returns a list or an array.");
static_assert(detail::isIterable<OutOther>::value,
"The result type of 'Each' task must be a list or an array.");
return Job<OutOther, InOther>(new Private::EachExecutor<Out, OutOther, InOther>(func, mExecutor));
}
template<typename OutOther, typename InOther>
Job<OutOther, InOther> reduce(ReduceTask<OutOther, InOther> func)
{
static_assert(Async::detail::isIterable<Out>::value,
"The 'Result' task can only be connected to a job that returns a list or an array");
static_assert(std::is_same<typename Out::value_type, typename InOther::value_type>::value,
"The return type of previous task must be compatible with input type of this task");
return Job<OutOther, InOther>(new Private::ReduceExecutor<OutOther, InOther>(func, mExecutor));
}
Async::Future<Out> exec()
{
mExecutor->exec();
return result();
}
Async::Future<Out> result() const
{
return *static_cast<Async::Future<Out>*>(mExecutor->result());
}
private:
Job(Private::ExecutorBase *executor)
: JobBase(executor)
{}
};
} // namespace Async
// ********** Out of line definitions ****************
namespace Async {
template<typename Out>
Job<Out> start(ThenTask<Out> func)
{
return Job<Out>(new Private::ThenExecutor<Out>(func));
}
namespace Private {
template<typename PrevOut, typename Out, typename ... In>
Future<PrevOut>* Executor<PrevOut, Out, In ...>::chainup()
{
if (mPrev) {
mPrev->exec();
return static_cast<Async::Future<PrevOut>*>(mPrev->result());
} else {
return 0;
}
}
template<typename PrevOut, typename Out, typename ... In>
void Executor<PrevOut, Out, In ...>::exec()
{
mPrevFuture = chainup();
mResult = new Async::Future<Out>();
if (!mPrevFuture || mPrevFuture->isFinished()) {
previousFutureReady();
} else {
auto futureWatcher = new Async::FutureWatcher<PrevOut>();
QObject::connect(futureWatcher, &Async::FutureWatcher<PrevOut>::futureReady,
[futureWatcher, this]() {
//FIXME mFinished is not part of the d-pointer but we copy the future below
// assert(futureWatcher->future().isFinished());
futureWatcher->deleteLater();
previousFutureReady();
});
futureWatcher->setFuture(*mPrevFuture);
}
}
template<typename Out, typename ... In>
ThenExecutor<Out, In ...>::ThenExecutor(ThenTask<Out, In ...> then, ExecutorBase* parent)
: Executor<typename PreviousOut<In ...>::type, Out, In ...>(parent)
{
this->mFunc = then;
}
template<typename Out, typename ... In>
void ThenExecutor<Out, In ...>::previousFutureReady()
{
if (this->mPrevFuture) {
assert(this->mPrevFuture->isFinished());
}
this->mFunc(this->mPrevFuture ? this->mPrevFuture->value() : In() ...,
*static_cast<Async::Future<Out>*>(this->mResult));
}
template<typename PrevOut, typename Out, typename In>
EachExecutor<PrevOut, Out, In>::EachExecutor(EachTask<Out, In> each, ExecutorBase* parent)
: Executor<PrevOut, Out, In>(parent)
{
this->mFunc = each;
}
template<typename PrevOut, typename Out, typename In>
void EachExecutor<PrevOut, Out, In>::previousFutureReady()
{
assert(this->mPrevFuture->isFinished());
auto out = static_cast<Async::Future<Out>*>(this->mResult);
if (this->mPrevFuture->value().isEmpty()) {
out->setFinished();
return;
}
for (auto arg : this->mPrevFuture->value()) {
Async::Future<Out> future;
this->mFunc(arg, future);
auto fw = new Async::FutureWatcher<Out>();
mFutureWatchers.append(fw);
QObject::connect(fw, &Async::FutureWatcher<Out>::futureReady,
[out, future, fw, this]() {
assert(future.isFinished());
const int index = mFutureWatchers.indexOf(fw);
assert(index > -1);
mFutureWatchers.removeAt(index);
out->setValue(out->value() + future.value());
if (mFutureWatchers.isEmpty()) {
out->setFinished();
}
});
fw->setFuture(future);
}
}
template<typename Out, typename In>
ReduceExecutor<Out, In>::ReduceExecutor(ReduceTask<Out, In> reduce, ExecutorBase* parent)
: Executor<In, Out, In>(parent)
{
this->mFunc = reduce;
}
template<typename Out, typename In>
void ReduceExecutor<Out, In>::previousFutureReady()
{
assert(this->mPrevFuture->isFinished());
this->mFunc(this->mPrevFuture->value(), *static_cast<Async::Future<Out>*>(this->mResult));
}
} // namespace Private
} // namespace Async
#endif // ASYNC_H
|